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Abstract: 13 

Aerosols are a complex compound with a great effect on the global radiation 14 

balance and climate system even human health, and concurrently are a large uncertain 15 

source in the numerical simulation process. The arid and semi-arid area has a fragile 16 

ecosystem, with abundant dust, but lacks related aerosol data or data accuracy. To solve 17 

these problems, we use the bagging trees ensemble model, based on 1 km aerosol 18 

optical depth (AOD) data and multiple environmental covariates, to produce monthly 19 

advanced-performance, full-coverage, and high-resolution (250 m) AOD products 20 

(named FEC AOD, Fusing Environmental Covariates AOD) in the arid and semi-arid 21 

areas. Then, based on FEC AOD, we analyzed the spatiotemporal pattern of AOD and 22 

further discussed the interpretation of environmental covariates to AOD. The result 23 

shows that the bagging trees ensemble model has a good performance, with its 24 

verification R2 always keeping at 0.90 and the R2 being 0.79 for FEC AOD compared 25 

with AERONET. The high AOD areas are located in the Taklimakan Desert and the 26 

Loess Plateau, and the low AOD area is concentrated in the south of Qinghai province. 27 

The higher the AOD is, the stronger the interannual variability. Interestingly, the AOD 28 

indicates a dramatic decrease in Loess Plateau and an evident increase in the southeast 29 
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Taklimakan Desert, while the AOD in the southern Qinghai province almost shows no 30 

significant change between 2000 and 2019. The annual variation characteristics present 31 

that AOD is the largest in spring (0.267) and the smallest in autumn (0.147); the AOD 32 

pattern in Gansu province is bimodal, but unimodal in other provinces. The farmland 33 

and construction land are at high AOD levels compared with other land cover types. 34 

The meteorological factors demonstrate a maximum interpretation of AOD on all set 35 

temporal scales, followed by the terrain factors, and the surface properties are the 36 

smallest, i.e., 77.1%, 59.1%, and 50.4% respectively on average. The capability of the 37 

environmental covariates for explained AOD varies with season, with an sequence 38 

being winter (86.6%) > autumn (80.8%) > spring (79.9%) > summer (72.5%). In this 39 

research, we pathbreakingly provide high spatial resolution (250 m) and long time 40 

series (2000-2019) FEC AOD dataset in arid and semi-arid regions to support the 41 

atmosphere and related study in northwest China, with the full data available at 42 

https://doi.org/10.5281/zenodo.5727119(Chen et al., 2021a). 43 

Keywords: Aerosol optical depth, Spatial downscaling, Machine learning, Gap filling, 44 

Arid areas 45 

1 Introduction 46 

Aerosols are a type of complex substance dispersed in the atmosphere that can be 47 

natural or anthropogenic sources(Kaufman et al., 2002). Aerosols can affect the global 48 

radiation balance and climate system directly, indirectly, or semi-indirectly by 49 

absorbing or scattering solar radiation(Myhre et al., 2013). Concurrently, aerosols 50 

seriously endanger human health by mixing, reacting, and dispersing dangerous 51 

compounds(Chen et al., 2020; Lelieveld et al., 2019). As one of the most significant 52 

optical characteristics of aerosols, the aerosol optical depth (AOD) is the integral of 53 

aerosol extinction coefficient in the vertical direction and indicates the attenuation 54 

impact of aerosols on solar energy(Chen et al., 2021b). AOD is frequently adopted to 55 

depict air pollution and also indirectly calculate various atmospheric parameters, such 56 

as particulate matter 2.5/10, with an extensive application in atmospheric environment-57 
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related research(Goldberg et al., 2019; He et al., 2020). 58 

Generally, the capital AOD acquisition method is in-situ observation, which has 59 

high precision. However, in-situ observation is restricted by the distribution of 60 

observation stations, so the data lacks spatial continuity, which makes it difficult to 61 

meet the objectives of growing regional atmospheric environmental studies(Zhang et 62 

al., 2019). Remote sensing (RS) is an effective tool for collecting AOD information 63 

over a wide range of spatial scales, significantly offsetting the deficiency of in-situ 64 

observation. RS can tackle difficulties connected to insufficient data and an uneven 65 

geographical distribution to a certain extent(Chen et al., 2020). Nonetheless, RS is not 66 

a perfect method to acquire AOD, with some problems, such as low spatial resolution 67 

and data missing in some particular situations(Li et al., 2020). Commonly utilized AOD 68 

satellite products derived from different sensor sources have different emphases in use 69 

(Tab.S1). Yet, the common point is that spatial resolution is coarse, and even has a large 70 

number of pixel values missing(Chen et al., 2022; Sun et al., 2021; Chen et al., 2021b; 71 

Wei et al., 2021). All these restrict the application of satellite AOD products on a 72 

regional scale, especially on an urban scale. Furthermore, the AOD spatial resolution 73 

scale often inevitably affects the following atmospheric pollutant prediction(Yang and 74 

Hu, 2018). These issues not just affect AOD analysis, but also mislead numerous 75 

pertinent uses of AOD data. 76 

Although methods for resolving AOD RS data deficiency have been studied, 77 

previous research has not addressed the problem completely(Li et al., 2020; Zhao et al., 78 

2019). The initial and most extensive method is interpolations, but the AOD has high 79 

spatiotemporal variability, thus applying the approach to anticipating AOD missing data 80 

isn't very suitable(Singh et al., 2017). Another widely used method is merging multiple 81 

AOD products, which can often improve data quality but always not completely 82 

eliminate pixel values missing phenomenon, even bringing offsetting 83 

consequences(Bilal et al., 2017; Ali and Assiri, 2019). Some statistical models such as 84 

linear regression and additive are also employed to fill the pixel values missing and 85 

improve the spatial resolution of the AOD products. However, these models' 86 
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performance are always doubtful due to their simple structure(Xiao et al., 2017). Most 87 

current methods for high-resolution AOD forecasts are focused on the individual model 88 

technique, which relies on a set of assumptions that are not frequently met, leading to 89 

inaccurate predictions(Li et al., 2017). As computing technology advances, ensemble 90 

machine learning methods provide new considerations and ways, which are less 91 

constrained by the hypothesis in a single model, with less over-fitting and outliers(Li et 92 

al., 2018). The strong data mining ability of the ensemble machine learning methods is 93 

good for fitting multisource data, and it can achieve higher precision at the same 94 

time(Zhao et al., 2019). As a result, the present research attempts to adopt ensemble 95 

machine learning methods to explore the production of advanced-performance, high-96 

resolution, full-coverage AOD dataset in arid and semi-arid areas. 97 

Currently, many previous studies have focused on AOD research in various regions 98 

and scales, which are concentrated on the eastern coastal areas and lack related 99 

exploration in arid and semi-arid areas. Arid and semi-arid areas, as important 100 

components of the earth's geography units, have extremely fragile bio-system and are 101 

extremely sensitive to climate change and human activities(Huang et al., 2017). Since 102 

the complex surface situation in arid and semi-arid areas, especially having huge deserts, 103 

many AOD retrieval algorithms are not suitable there. Although a minority of 104 

algorithms can acquire AOD in arid and semi-arid areas, such as the deep blue (DB) 105 

algorithm and multiangle implementation of atmospheric correction (MAIAC) 106 

algorithm, which still is limited by coarse resolution, high uncertainty, or a large no-107 

data phenomenon, so these AOD productions are hard to meet the needs of arid and 108 

semi-arid areas atmosphere environmental research(Wei et al., 2021). However, arid 109 

and semi-arid areas are crucial dust sources, with strong variability in the aspects of 110 

aerosol loading and optical characteristics. As a typical dust source and AOD data-111 

scarce areas, the AOD variety in arid and semi-arid areas has significant influences on 112 

global climate change and model simulation. Therefore, manufacturing a higher-quality 113 

AOD dataset in arid and semi-arid areas is necessary for local and even global 114 

atmosphere environment research. 115 
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To better solve the lack of AOD data in arid and semi-arid areas, this research aims 116 

to acquire advanced-performance, high-resolution, full-coverage AOD datasets that 117 

will serve as the foundation for future studies. To achieve this goal, the main work of 118 

this study includes: (1) based on MAIAC AOD, combined with multiple environmental 119 

covariates, utilized a machine learning method, FEC AOD is obtained for the periods 120 

2000–2019; (2) Aerosol Robotic Network (AERONET) ground observation data and 121 

the MCD19A2 and MxD08 AOD satellite products were collected to verify the 122 

accuracy of FEC AOD; (3) the FEC AOD spatiotemporal change is analyzed; (4) the 123 

dominant environmental covariates of FEC AOD are explored. 124 

2 Materials and methods 125 

2.1 Study area 126 

Fig.1 shows the arid and semi-arid areas in northwest China (E 73°25’ - 110°55’, N 127 

31°35’ - 49°15’), a typical arid and semi-arid region on the globe, in terms of the spatial 128 

location, surface cover and the environmental problem(Ge et al., 2016). As a dust source 129 

and ecosystem fragile area, the regional difference in climate is significant, which is 130 

perennial in drought and less precipitation (< 400 mm) conditions (Ding and Xingming, 131 

2021). Furthermore, the area is extremely sensitive to climate change and human 132 

activities and has a large AOD variability, which brings great difficulty to the global 133 

climate simulation and radiation balance quantification. With the development of 134 

society and technology, the force of people to change nature is increasing. More and 135 

more unreasonable human activities (deforestation, soil salinization) and poor land 136 

management policies (reclamation, water resources utilization) bring about regional 137 

vegetation degradation, desertification, rapid glacier melting, and frequent dust weather, 138 

which eventually lead to the fast deterioration of the ecological environment in the 139 

whole arid and semi-arid areas. 140 
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 141 

Figure 1 Study area. The figure shows typical arid and semi-arid areas, five provinces 142 

in northwest China. 143 

2.2 MODIS MAIAC data 144 

MAIAC AOD, which is named MCD19A2, is based on MODIS onboard Terra and 145 

Aqua, combined with the MAIAC algorithm produced. The MAIAC algorithm is an 146 

advanced AOD retrieval method, using time-series analysis and image-based spatial 147 

processing, which can acquire AOD data from densely vegetated areas as well as bright 148 

desert regions(Lyapustin et al., 2018; Lyapustin et al., 2011). The MAIAC AOD 149 

product's temporal and spatial resolutions are 1 day and 1 km × 1 km respectively, 150 

which is the highest spatial resolution in existing AOD products. The MAIAC AOD 151 

product also offers a long time-series AOD collection, which has been intended for air 152 

quality research on regional and even global scales. Compared with former AOD 153 

products, the MAIAC AOD data performance on bright surfaces and heavy AOD 154 

loadings areas generally is considered to make a significant improvement(Li et al., 2018; 155 

Chen et al., 2021b). In this paper, we acquired MAIAC AOD for the entire study region 156 

from the NASA website (https://search.earthdata.nasa.gov/) over 20 years, from March 157 

2000 to February 2020. Based on the python tool, we preprocessed the data and 158 

computed the daily average AOD by combining the 550 nm AOD data from Terra and 159 

Aqua. 160 
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2.3 MODIS MxD08_M3 data 161 

MYD08_M3 and MOD08_M3 are the level 3 atmosphere global products from 162 

Aqua and Terra respectively, where spatial and temporal resolutions are 1° × 1° and 1 163 

month respectively. Based on the MODIS Collection 6.1, we chose 550 nm combined 164 

land and ocean mean band AOD to validate FEC AOD. It is worth noting that the Aqua 165 

and Terra launch time is different, so we can acquire MOD08_M3 data from March 166 

2000 to February 2020, but as for MYD08_M3, we only acquire data from July 2002 167 

to February 2020. All processes are realized through the Google Earth Engine (GEE) 168 

cloud computing platform (Also, the data is available independently from 169 

https://ladsweb.modaps.eosdis.nasa.gov/). GEE has a multi-petabyte database of an 170 

extensive and varied number of reanalysis and satellite imagery data collected over 171 

several decades, which allows for the quick and effective processing of numerous years 172 

of satellite data using an easy-to-use online cloud computing platform(Hu et al., 2021; 173 

Gorelick et al., 2017). 174 

2.4 AERONET data 175 

AERONET (Aerosol Robotic Network) is a network that monitors aerosols on the 176 

ground, providing 0.340-1.060 m aerosol optical characteristics at a high temporal 177 

resolution (15 min)(Holben et al., 1998). AERONET currently includes more than 500 178 

sites and covers major regions of the world with a long time series. AERONET AOD 179 

has low uncertainty (0.01–0.02), which is considered the highest accuracy AOD data 180 

and is widely used in RS AOD products validation as a reference(Almazroui, 2019). 181 

Satellite products mostly provide 550 nm wavelength AOD, so the AERONET AOD at 182 

550 nm is computed via the Ångström exponent algorithm to better match the AOD 183 

observed by satellite(Ångström, 1964). In the temporal dimension, we compute the 184 

average of AERONET AOD over Aqua and terra overpass period. In the spatial 185 

dimension, we match the satellite and in-situ observed AOD over a 3 × 3 pixels spatial 186 

window(Tao et al., 2017). The AERONET data and related information can be found at 187 

https://aeronet.gsfc.nasa.gov (Tab.S2). 188 
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2.5 Environmental covariates 189 

Environmental covariates selected in this study contain 12 covariates in three 190 

categories (meteorology, surface information, and topography). Covariates are selected 191 

based on two criteria: first, each variable is considered important to AOD and has a 192 

vital influence on AOD formation, accumulation and migration process, referring to 193 

existing research and expert experience (Zhao et al., 2019; Chen et al., 2020; Yan et al., 194 

2022); the second, the data is released to the public for free, which means that the data 195 

set is freely available on the national or global scale(Li et al., 2020). The detailed 196 

information is listed in Tab.1. In this study, we compute two sets of spatial resolution 197 

of environment variable data (1 km and 250 m). The 1 km spatial resolution data aim 198 

to model with MAIAC 1 km AOD, and a 250 m spatial resolution data is the target 199 

resolution of FEC AOD. To normalize the covariables on this basis, we interpolated the 200 

geo-datasets to 1 km and 250 m in ArcGIS (the bilinear method is used for continuous 201 

covariates and the nearest neighbor method is used for classified covariates) and 202 

reprojected them onto the 1984 coordinate system of the World Geodetic System 203 

(WGS). The environmental covariates can be divided into static and dynamic 204 

variables. As for dynamic covariates, the monthly average method is adopted to obtain 205 

the multi-year average data. It is worth pointing out that the relevant operations are not 206 

limited to ArcGIS, and relevant open source software such as QGIS can also be 207 

implemented. 208 

2.5.1 Meteorological parameters 209 

The meteorological parameters include temperature, precipitation, 210 

evapotranspiration, and wind speed. The temperature and precipitation data are 211 

obtained from the national Tibet Plateau data center (TPDC), whose temporal and 212 

spatial resolution is 1 month and 1 km × 1 km respectively. The evapotranspiration (ET) 213 

data is from TPDC’s terrestrial evapotranspiration dataset across China, whose 214 

temporal and spatial resolution is 1 month and 0.1° × 0.1° respectively(Szilagyi et al., 215 

2019). To ET data, we use a downscaling algorithm proposed by Ma (2017) to transform 216 
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it into 1 km. The wind speed data is from National Earth System Science Data Center, 217 

whose temporal and spatial resolution is 1 month and 1 km × 1 km respectively(Sun et 218 

al., 2015). As for the four meteorological parameters, we have calculated the monthly 219 

average state every year for the next research. 220 

2.5.2 Surface properties 221 

The surface properties mainly employ land use and land cover (LUCC), normalized 222 

difference vegetation index (NDVI), and temperature vegetation dryness index (TVDI) 223 

to describe. LUCC data selects in the median of the whole study time, 2010, which is 224 

from Resource and Environment Science and Data Center. The LUCC data set is 225 

obtained by manual visual interpretation of the Landsat Series data as the data source. 226 

It includes 6 categories (farmland, forest, grassland, waterbody, construction land, and 227 

unused land) and 25 subcategories, with a spatial resolution of 30 m. NDVI data is 228 

obtained from NASA Global Inventory, Monitoring, and Modelling Studies(GIMMS) 229 

NDVI3g v1, whose temporal and spatial resolution is 15 days and 0.083° × 0.083° 230 

respectively. NDVI, the same as ET, is downscaled to 1 km. TVDI is a soil moisture 231 

inversion method based on NDVI and surface temperature. It can better monitor 232 

drought and be used to study the spatial variation characteristics of drought degree. 233 

TVDI temporal and spatial resolution is 1 month and 1 km × 1 km respectively. 234 

2.5.3 Terrain factor 235 

The elevation is from Shuttle Radar Topography Mission 90 m Digital Elevation 236 

Model (SRTM). Based on elevation, geomorphology is realized under Geographic 237 

Resource Analysis Support System extension named r.geomorphon modular(Jasiewicz 238 

and Stepinski, 2013). Using System for Automated Geoscientific Analyses soft239 

（https://sourceforge.net/projects/saga-gis/), plan curvature, slope length and slope 240 

steepness, and topographic wetness index is computed. 241 
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2.6 Bagging trees ensemble 244 

The ensemble machine learning methods according to whether there exists 245 

dependency relation between learners are mainly divided into two categories, Boosting 246 

and Bagging (Fig.S1)(González et al., 2020). If there is a strong dependency between 247 

individual weak learners and a series of individual weak learners needs to be generated 248 

serially (That means that the following weak learner is affected by the former weak 249 

learner), which is Boosting. In contrast, if there is no dependency between individual 250 

weak learners, and a series of individual learners can be generated in parallel (There is 251 

no constraint relationship between each learner), which is Bagging. The typical 252 

representative and extensive use algorithms of Boosting and Bagging are Gradient 253 

Boosting Decision Tree (GBDT) and Random Forest (RF) respectively(Zounemat-254 

Kermani et al., 2021). Compared with Boosting, Bagging reduces the difficulty in 255 

training and has a strong generalization. 256 

Bagging (namely bootstrap aggregating) as a simple but powerful ensemble 257 

algorithm to obtain an aggregated predictor is more accurate than any single 258 

model(Breiman, 1996). Bagging is through multiple base learners or individual learners 259 

(such as decision trees, neural networks, and other basic learning algorithms) to 260 

construct a robust learner under certain combined strategies(Li et al., 2018). Generally, 261 

the bagging algorithm includes bootstrap resampling, decision tree growing, and out-262 

of-bag error estimate. The main steps of the Bagging are as follows: (1) Bootstrap 263 

resampling, a random sample (return sampling) under abundant individual weak 264 

learners. (2) Model training, based on the origin samples to training for abundant 265 

individual weak learners in accordance with the self-serving sample set. (3) Result 266 

output, based on the decision tree and calculates the average of all the regression results 267 

to obtain regression results. Therefore, bagging reduces the overfitting problem and 268 

prediction errors in decision trees and variance, thereby significantly improving the 269 

accuracy. Simultaneously, the influence of noise on the Bagging algorithm is 270 

comparatively less than the other available machine learning algorithms for AOD(Liang 271 
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et al., 2021). 272 

In this study, we use 12 environmental covariates (1 km) as bagging trees ensemble 273 

algorithms input to acquire AOD environmental covariates model in 1 km, and utilize 274 

the model and 250 m environmental covariates to acquire FEC AOD. In case of the lack 275 

of environmental covariates in some periods, we use the multi-year monthly average to 276 

replace them. The reason why the 250 m target resolution is selected is that existing 277 

studies show that aerosol RS research at the scale of 250 - 500 m spatial resolution is 278 

appropriate, which can better capture aerosols feature(Wang et al., 2021; Chen et al., 279 

2020). Secondly, most high-resolution product data in the global are 250 m, especially 280 

soil, which is more convenient for peer comparison and further research and 281 

application(De Sousa et al., 2020; Hengl et al., 2017). The model was built monthly 282 

from March 2000 to February 2020 to assure the model's accuracy in the inference 283 

process, whose specific parameters set include the 10 cross-validation folds, the number 284 

of learners (N = 30), and the minimum leaf size (Lmin = 8). Each base learner was 285 

developed using a bootstrap sample generated individually from the input data. All 286 

steps were implemented in Matlab R2021a (Fig.2). Definitely, all modeling and 287 

application processes can also be implemented in R or Python. 288 
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 289 

Figure 2 Flow chart of experiment and model calculation process. 290 

3 Results and analysis 291 

3.1 Accuracy validation based on in-situ and satellite 292 

To verify the performance of the FEC AOD over arid and semi-arid areas, based 293 

on AERONET AOD data as reference, some generalized parameters are chosen to 294 

assess the performance of FEC AOD, such as the decision coefficient (R2), root mean 295 

square error (RMSE), expected error (EE), etc.(Levy et al., 2010; Ali et al., 2019; Feng 296 

et al., 2021). When R2 is higher and RMSE is lower, the performance of the model is 297 

better. EE can evaluate the degree of overestimation and underestimation of FEC AOD 298 

via three situations (within EE, above EE, and below EE). To examine the high 299 

resolution and full coverage FEC AOD performance, we computed the month average 300 

AOD at each AERONET site in the whole study region. Specifically, we check data 301 
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time range and data usability at every site, as for the daily scale, we only compute the 302 

average AOD from local time 9:00 am to 2:00 pm as the daily mean (if the valid data 303 

number in a day is less than 18, daily mean is considered missing). As for the monthly 304 

scale, if the number of the effective daily mean is less than 20 days, the monthly mean 305 

is considered missing, so 180 effective matching samples were obtained. As shown in 306 

Fig.3, FEC AOD was highly correlated with AERONET monthly AOD (R2 = 0.787), 307 

with MAE of 0.049 and RMSE of 0.061. Approximately 64.5% of monthly collections 308 

fell within the EE, with RMB of 1.018 and Bias of 0.005, which means the FEC AOD 309 

products almost overcome some problems of overestimation and underestimation. 310 

Compared with previous studies, the FEC AOD has better accuracy than MAIAC AOD 311 

and MxD08 AOD products(Chen et al., 2021b; Wei et al., 2019). 312 

 313 

 314 

Figure 3 Comparison between the FEC AOD and AERONET AOD. The red line is the 315 

regression line, the black dashed line is the 1:1 line, and the blue area indicates the 316 

prediction interval. 317 

 318 

The multi-year average AOD spatial distribution was calculated (Fig.4). The AOD 319 

spatial pattern has high consistency, and the high AOD is located in Taklimakan Desert 320 

and Loess Plateau, and the low AOD is distributed in high altitude areas (such as 321 
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mountain zone and Qinghai). As for MxD08 AOD, the direct feeling is coarse spatial 322 

resolution, with lots of missing data. To further explore the improvement of FEC AOD 323 

based on MAIAC AOD, two typical cities in arid and semi-arid areas are selected to 324 

analyze the use on an urban scale. From Fig. S2 and S3, we can easily find the difference 325 

in different AOD satellite products. Obviously, MOD08 and MYD08 AOD products are 326 

not suitable for urban air quality research. We randomly select Shaybak and Chengguan 327 

districts for magnification in Urumqi and Lanzhou cities respectively. Compared with 328 

MAIAC AOD, the FEC AOD has a strong potential to describe local AOD features or 329 

fine AOD distribution. Concurrently, the multi-year monthly average of four AOD 330 

products (FEC AOD, MAIAC AOD, MOD08 AOD, and MYD08 AOD) was counted 331 

(Fig.S4). From January to December, the four AOD products show a trend of increasing 332 

first and decreasing next, reaching the lowest value in November. Of course, there are 333 

some differences in the AOD magnitude and fluctuation range, which are mainly due 334 

to the difference in AOD retrieval algorithms. 335 

 336 

 337 

Figure 4 The muti-years spatial average AOD for (a) FEC AOD, (b) MAIAC AOD, 338 

(c) MOD08 AOD, and (d) MYD08 AOD. 339 

 340 
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The seasonal-trend decomposition procedure based on loess (STL) is used in time-341 

series decomposition for four AOD products to further analyze the consistency and 342 

difference in time scale (Fig.5). STL decomposes the time series data into additive 343 

variation three components: trend, seasonal and remainder(Chen et al., 2021b). Firstly, 344 

the four AOD data change in a similar manner, fluctuating and slightly decreasing, and 345 

the MxD08 AOD fluctuation range is significantly higher than that of FEC AOD and 346 

MAIAC AOD. As for seasonal characteristics, the four AOD products feature 347 

significant seasonal cycle variation. The spring and summer AOD remain at a high level, 348 

and winter always is the lowest. Then, moving to the general trend after the season 349 

effect is removed, the four AOD products show a tortuous rise at first, beginning to 350 

decline around 2012, and rebounding about 2017. In summary, we can draw the 351 

decision that FEC AOD products demonstrate a reliable accuracy and ability to capture 352 

local information, even superior to MAIAC and MxD08 AOD products. 353 

 354 

 355 

Figure 5 Seasonal and trend decomposition using loess for (a) FEC AOD, (b) MAIAC 356 

AOD, (c) MOD08 AOD, and (d) MYD08 AOD. 357 
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3.2 Spatiotemporal pattern of FEC AOD from 2000 to 2019 358 

Fig.6 shows annual mean FEC AOD maps for each year from 2000 to 2019 and 359 

multi-year mean AOD map. In general, spatial patterns are consistent over different 360 

years, where the highest AOD are found in the south of Xinjiang and the center of 361 

Shaanxi provinces, mainly due to special meteorological conditions, unique topography 362 

and surface coverages. AOD is low in other areas, especially in the south of Qinghai 363 

province. The multi-year mean AOD is 0.193 ± 0.124 for the whole of the study areas. 364 

Fig.7 illustrates the spatial distributions of seasonal mean AOD from 2000 to 2019. The 365 

spatial patterns of AOD greatly differ at the seasonal level. In autumn, AOD is the 366 

lightest, with an average AOD value of 0.147 ± 0.089 and most AOD values < 0.2. By 367 

contrast, AOD is most severe in spring, with most AOD values > 0.2 (average = 0.267 368 

± 0.200). The summer and winter have similar spatial patterns and the former is higher 369 

than the latter, with AOD values being 0.198 ± 0.134 and 0.159 ± 0.103 respectively. 370 

The higher the AOD level is, the stronger the fluctuation of AOD. 371 

 372 

 373 

Figure 6 FEC AOD annual mean maps for each year from 2000 to 2019. 374 
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 375 

Figure 7 FEC AOD seasonal mean maps averaged over the period 2000-2019. 376 

 377 

To further investigate the spatiotemporal variety feature of AOD, the concepts of 378 

information entropy are introduced, which are temporal information entropy (TIE) and 379 

time-series information entropy (TSIE) respectively(Ebrahimi et al., 2010). TIE and 380 

TSIE are time series indicators that can depict the changing intensity and trend 381 

information of AOD. Generally, the higher (lower) the TIE is, the stronger (weaker) the 382 

changing intensity of AOD in the temporal dimension. As for TSIE, if TSIE >0, the 383 

shows AOD is increasing in this period, whereas TSIE <0 denotes a downward trend. 384 

Furthermore, the bigger the absolute value of TSIE is, the more significant the 385 

increasing (decreasing) trend. Fig.8 depicts the TIE and TISE of AOD from 2000 to 386 

2019 over the whole study area. We find that the overall change intensity of AOD over 387 

the past 19 years is large, especially in the south of Xinjiang(The Taklimakan Desert) 388 

and Shannxi province(The Loess Plateau). The areas with low variation intensity are 389 

mainly distributed in high elevations (mountainous areas and grassland areas). The 390 

characteristic of changing intensity is similar to the AOD change, which means the 391 

higher AOD is, the larger the multi-year change is. The AOD in Xinjiang is increasing, 392 
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with the most obvious increases occurring around the Taklimakan Desert and the north 393 

of Xinjiang, whereas that in the east is decreasing, mainly concentrated in Shannxi 394 

province and southeast of Gansu province. Considering TIE and TSIE together, we can 395 

find that AOD has strongly increased in southeastern Taklimakan Desert while slightly 396 

increasing in northern Xinjiang and the northwestern Qinghai province. The AOD in 397 

the south of Qinghai province shows almost no change. The dramatic decrease can be 398 

found in the east, mainly distributed in the Shannxi, Ningxia, and southeastern Gansu 399 

provinces. A possible reason for this finding is that the Loess Plateau is experiencing 400 

greening, and the vegetation keeps increasing under artificial intervention. 401 

 402 

 403 

Figure 8 TIE and TSIE of AOD distribution. 404 

 405 

The FEC AOD products with high spatial resolution and full coverage over arid 406 

and semi-arid areas provided new possible data sources to further research the air 407 

pollution in scarce data areas on fine scales. Based on the FEC AOD, we explore the 408 

regional distribution characteristics under different areas and surface coverage types. 409 

Fig.9 shows that AOD in Gansu province is the highest in all months, and AOD in 410 

Qinghai province is the lowest. From January to December, the AOD almost shows a 411 

trend of increasing at first and decreasing next, reaching a peak in March and April. It 412 

is worth noting that except for the Gansu province, where AOD is bimodal, other 413 

provinces are unimodal. Fig.10 describes the AOD season distribution under seven 414 

different land cover types (forest, grassland, waterbody, ice and snow, construction land, 415 

unused land, and farmland). The AOD over the ice and snow is the smallest and keeps 416 
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decreasing from spring to winter. AOD is at a high level over farmland and construction 417 

land, which is mainly related to human activities. Despite the land cover type, AOD in 418 

spring is still the highest. Except for ice and snow and unused land, else land cover type 419 

keeps a similar seasons distribution, with decrease and then increase, and autumn is the 420 

bottom. 421 

 422 

 423 

Figure 9 The monthly distribution characteristics of AOD in different provinces. 424 

 425 

 426 

Figure 10 AOD season distribution under different land cover types. 427 
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3.3 Variation partitioning of FEC AOD 428 

To examine the contribution of environmental covariates to the FEC AOD dynamic, 429 

the redundancy analysis (RDA) was used to explore the association between different 430 

seasons of FEC AOD and the environmental covariates. The twelve environmental 431 

covariates were divided into three groups, meteorology, surface properties, and terrain. 432 

The variance proportion driving the variation of FEC AOD on different temporal scales 433 

was tested from the environmental covariates groups. The variation of FEC AOD can 434 

be interpreted by every group of environmental covariates individually or the combined 435 

variation owing to two or more covariates set, and the residual represents the 436 

unexplained proportion. The variance partitioning results can be described as Venn’s 437 

diagram makes by R language(Waits et al., 2018). From Tab.2 and Fig.11, the variation 438 

partitioning analysis reveals that the meteorological factors still explain a maximal 439 

proportion of variance of FEC AOD on different temporal scales, followed by terrain 440 

factor, and the surface properties are the smallest, i.e., 77.1%, 59.1%, and 50.4% 441 

respectively on average. In different seasons, the environmental covariates have 442 

different abilities to explain FEC AOD, with the sequence being winter (86.6%) > 443 

autumn (80.8%) > spring (79.9%) > summer (72.5%). Except for winter, the largest 444 

variance is explained by three groups' environmental covariates, with 40.7%, 38.9%, 445 

and 45.4% respectively. In winter, the largest variance is explained by meteorological 446 

and terrain factors (39.1%). From spring to winter, the explanatory ability of the three 447 

groups of covariates is always the highest in autumn, and meteorological parameters, 448 

surface properties, and terrain factors reach the lowest in summer, winter, and spring 449 

respectively. 450 

 451 

 452 

 453 

 454 

 455 

 456 
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Table 2 Three groups of environmental covariates for AOD variation partitioning 457 

Variance proportion Spring Summer Autumn Winter Average 

Meteorological parameters 78.8% 70.4% 80.5% 74.8% 77.1% 

Surface properties 44.5% 37.9% 52.5% 31.4% 50.4% 

Terrain factor 48.7% 49.5% 62.6% 62.8% 59.1% 

Residual 20.1% 27.5% 19.2% 13.4% 21.8% 

 458 

 459 

Figure 11 Variation partitioning for seasons and average AOD explained by (a) spring; 460 

(b) summer; (c) autumn. (d) winter. 461 

 462 

 463 

 464 

 465 
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4 Discussion 466 

4.1 Model uncertainty 467 

This study, based on MAIAC AOD and 12 environmental covariates data, adopting 468 

bagging trees ensemble approaches, produces monthly advanced-performance, full-469 

coverage, and high-resolution FEC AOD in northwest China. The bagging trees 470 

ensemble approach has a strong advantage in characteristics modeling and prediction, 471 

but also there exists some problems, for example, most of the base learners are a black 472 

box, which means the explanation is limited(Zounemat-Kermani et al., 2021). 473 

Concurrently, the model uncertainty that is also an issue to be considered possibly arises 474 

from the setting of hyperparameters and base learner and sample number 475 

selection(Khaledian and Miller, 2020). Therefore, the model robustness is critical to 476 

modeling and predicting. Simultaneously, providing mapping uncertainty helps users 477 

better understand the quality of FEC AOD in different regions, which further promotes 478 

users' reasonable use of AOD products. To check the reliability and stability of the AOD 479 

simulated model and consider the computing efficiency simultaneously, one month's 480 

data were randomly selected (August 2010), and we conducted 100 times 10-fold cross-481 

validation, that is, 100 times of prediction for each pixel, and the final prediction result 482 

is the average of 100 times(Rodriguez et al., 2010; Wei et al., 2021; Zhang et al., 2021; 483 

Ma et al., 2022). Then, we calculate model uncertainty, specifically, through the 484 

standard deviation, upper and lower limits 95% confidence interval to realize. From 485 

100 experiments, the validated R2 still remains at 0.90, and the RMSE and MAE range 486 

in 0.058 - 0.057 and 0.0319 - 0.0317 respectively. Concurrently, the case average and 487 

uncertainty results are shown in Fig.12. The FEC AOD mainly concentrates on the 488 

range 0 - 0.6, accounting for 96.2%, and the maximum distribution is 0.1 - 0.2 (36.8%). 489 

The uncertainty mainly concentrates on the range 0.2 - 0.6, accounting for 80.0%, and 490 

the maximum distribution is 0.4 - 0.5 (38.1%). We also calculated the average 491 

uncertainty corresponding to different levels of FEC AOD (Fig.13). The uncertainty is 492 

lower than 0.5, accounting for 77.3% of the region, and the lowest uncertainty (0.3) 493 
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corresponds to the largest proportion of FEC AOD (0.1 - 0.2). With the AOD increasing, 494 

the uncertainty also remains on rise, that is to say, the high AOD areas often feature 495 

high uncertainty. 496 

 497 

 498 

Figure 12 Distribution of mean and uncertainty in the prediction model of AOD. 499 

 500 

 501 

Figure 13 The average uncertainty corresponding to different levels of AOD. The 502 

light-colored area surrounded by black lines is the AOD percentage, and the 503 

histogram is the uncertainty. 504 

 505 

4.2 AOD as affected by environmental covariates 506 

 The bagging trees ensemble method performance generally is affected by the 507 

selection of environmental covariates(Khaledian and Miller, 2020). Despite our 508 

selection of 12 environmental covariates that can explain most AOD variation, there are 509 
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always about 13.4% - 27.5% that can not be well explained, and there are differences 510 

in the interpretation of environmental covariates. Therefore, there is much space for 511 

improvement in the optimization of environmental covariates. There is no doubt that 512 

the meteorological parameter is the most significant contributor because of the 513 

temperature, precipitation, evapotranspiration, and wind speed through direct or 514 

indirect interaction to effectively influence AOD in the air(Chen et al., 2020). At the 515 

same time, the effect of terrain factors can not be ignored, which affects the propagation, 516 

diffusion, and settlement of AOD. The surface factors through the surface cover and 517 

soil wetness affect dust generation and reduction. However, there are also some 518 

questions that need further research, such as surface properties performance to explain 519 

AOD in summer lower spring, and the terrain factors have a higher AOD variance 520 

analytical power in autumn and winter compared with spring and summer. It is 521 

preliminarily speculated that this may be related to multi-factor interaction, which 522 

needs further analysis. In the following research, we consider introducing more related 523 

environmental covariates to try to improve prediction accuracy. In addition, we plan to 524 

further explore the internal correlation between various covariates and the relative 525 

contribution of individual covariates to AOD. Of course, the high spatial resolution and 526 

accuracy of environmental covariates are also necessary to take into consideration (add 527 

or replace). 528 

5 Data availability 529 

This monthly advanced-performance, full-coverage, high-resolution AOD dataset 530 

(FEC AOD) over northwest China is freely available via 531 

https://doi.org/10.5281/zenodo.5727119(Chen et al., 2021a). 532 

6 Conclusion 533 

 In this paper, the monthly advanced-performance, full-coverage, high-resolution 534 

AOD dataset, based on MAIAC AOD and multiple environmental covariates, and 535 
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utilizing a machine learning method, is produced from 2000 to 2019 in the northwest 536 

region of China. AERONET and MODIS AOD data were collected to verify the 537 

accuracy of FEC AOD. Then, the FEC AOD spatiotemporal change is analyzed and the 538 

interpretation of environmental covariates to FEC AOD is explored. The result shows 539 

that the FEC AOD effectively compensates for the deficiency and constraints of in-situ 540 

observation and satellite AOD products. Meanwhile, FEC AOD products demonstrate 541 

a reliable accuracy and ability to capture local information, even superior to MAIAC 542 

and MxD08 AOD products, which has also indicated the necessity of the high spatial 543 

resolution of AOD data. The spatial patterns are consistent among different years and 544 

greatly differ at the seasonal level. The higher the AOD is, the stronger the time 545 

variability. The AOD shows a dramatic decrease in Loess Plateau and an evident 546 

increase in the southeast Taklimakan Desert between 2000 and 2019. The farmland and 547 

construction land are at high AOD levels in comparison with other land cover types. 548 

The meteorological factors demonstrate a maximum interpretation of AOD on all set 549 

temporal scales, and the capability of the environmental covariates for the explained 550 

AOD varies with season. 551 
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